Integrating Design with a Twist:

Designing and Turning a Twisted Segmented Bowl

Brian Horais February 2017

Overview

- The following charts provide a visual 'walkthrough' of the design process for fabricating a twisted, segmented bowl with an integrated design
- A three-point off-axis turning method is used to provide the twist
- The process for developing a segmented design to align with the twist is then described
- Images of the fabrication process complete the 'walkthrough'

Examples

Additional Examples

Off-axis Turning

A few charts are provided here on this topic but a more complete description of this method is available in a separate presentation

Making the Three Axis Turning

- Turn the spindle round first, with tenons on each end (for later holding)
- For three-axis, mark off 120 degree lines from center
- Determine the off-axis separation (~1/3 R to 1/2 R) and mark the off-axis points with a punch
- Number the axis on each end to be turned be consistent and careful to maintain your numbering scheme
- Use a small sharp four prong drive center (5/8" is good)
- Use higher speeds (stop before vibration) and sharp tools
- Sand arc cuts by hand with the lathe off
- Make sample pieces and careful notes to define shapes

Draw a line to the other end of the blank and repeat the marking and numbering

Marking the Offsets

3-axis offset yields triangular end shape

• Using a 3-axis offset scheme, with 120 degree separation yields a triangular end shape for the twisted section

Making a Triangle from Circles

- The three offset intersecting circles yield a triangular end section
- Using a 120 degree offset on centers yields the twist

A Simple Twisted Turning

Translating 3-D to 2-D

- The twisted shape used repeats every 120 degrees
 - 3 times per circumference
- Laying out a repeating design with the desired number of segments is the basic building block
 - Repeating this design 3 times yields the circumference

Spreadsheet Designing

- Using 24 segments per ring provides more design 'space'
- Pattern repeats every 8 segments (multiples of 3 and 2 needed)
- Top and bottom (grey areas) are sacrificial holding blocks

Designing the Segmented Twist

Identifying the Segments

Cross Section and Top View

Totals of Segments per Ring

Cutting and Gluing the Segments

Assembling the Rings

Hose Clamps

No-Glue Standoffs at Halfway Sections

Turning the Shape

Design versus Actual

Off Axis Mounting and Wobble

Finishing the Top

The Finished Bowl

Additional Designs

• This vase was designed with 12 segments per ring and nine layers

...from design

to finished product

Additional Designs

• This vase was designed with 24 segments per ring and thirteen layers

A Variation: Twisted Slats

More Examples

Additional Information

Additional materials on twisted and twisted/segmented turning can be found at:

- Brian Horais website:
 - <u>https://sites.google.com/site/cabriturn/home</u>
- Barbara Dill (off-axis turning):
 - <u>www.barbaradill.com</u>
- Segmented turning:
 - <u>https://www.woodturningonline.com/articles.php</u>