## Integrating Design with a Twist:

## Designing and Turning a Twisted Segmented Bowl



Brian Horais
February 2017

## Overview

- The following charts provide a visual 'walkthrough' of the design process for fabricating a twisted, segmented bowl with an integrated design
- A three-point off-axis turning method is used to provide the twist
- The process for developing a segmented design to align with the twist is then described
- Images of the fabrication process complete the 'walkthrough'


## Examples



## Additional Examples



## Off-axis Turning



A few charts are provided here on this topic but a more complete description of this method is available in a separate presentation


## Making the Three Axis Turning

- Turn the spindle round first, with tenons on each end (for later holding)
- For three-axis, mark off 120 degree lines from center
- Determine the off-axis separation ( $\sim 1 / 3 R$ to $1 / 2 R$ ) and mark the off-axis points with a punch
- Number the axis on each end to be turned - be consistent and careful to maintain your numbering scheme
- Use a small sharp four prong drive center ( $5 / 8^{\prime \prime}$ is good)
- Use higher speeds (stop before vibration) and sharp tools
- Sand arc cuts by hand with the lathe off
- Make sample pieces and careful notes to define shapes



## Marking the Offsets



## 3-axis offset yields triangular end shape

- Using a 3-axis offset scheme, with 120 degree separation yields a triangular end shape for the twisted section



## Making a Triangle from Circles



- The three offset intersecting circles yield a triangular end section
- Using a 120 degree offset on centers yields the twist


## A Simple Twisted Turning

'ride the bevel' of your tool when turning


Stationary


Turning sequence for the end points:


| Head | Tail <br> 1 |
| :---: | :---: |
| 2 | 2 |
| 3 | 3 |
| 2 |  |

This is the region where you are 'turning air'

## Translating 3-D to 2-D

- The twisted shape used repeats every 120 degrees
- 3 times per circumference
- Laying out a repeating design with the desired number of segments is the basic building block
- Repeating this design 3 times yields the circumference


3-D


2-D

## Spreadsheet Designing

- Using 24 segments per ring provides more design 'space'
- Pattern repeats every 8 segments (multiples of 3 and 2 needed)
- Top and bottom (grey areas) are sacrificial holding blocks



## Designing the Segmented Twist



For demo purposes, a simpler 12 segment design was chosen

## Identifying the Segments



Cross Section and Top View


Totals of Segments per Ring

## Cutting and Gluing the Segments



## Assembling the Rings



No-Glue Standoffs at Halfway Sections

Hose Clamps


## Turning the Shape



## Design versus Actual



## Off Axis Mounting and Wobble



## Finishing the Top



## The Finished Bowl



## Additional Designs

- This vase was designed with 12 segments per ring and nine layers

...from design
to finished product



## Additional Designs

- This vase was designed with 24 segments per ring and thirteen layers



## A Variation: Twisted Slats



## More Examples



## Additional Information

Additional materials on twisted and twisted/segmented turning can be found at:

- Brian Horais website:
- https://sites.google.com/site/cabriturn/home
- Barbara Dill (off-axis turning):
- www.barbaradill.com
- Segmented turning:
- https://www.woodturningonline.com/articles.php

